

@ExaTrack http://www.exatrack.com Page 1

From tweet to rootkit
ExaTrack - Stéfan Le Berre (stefan.le-berre [at] exatrack.com)

This paper will talk about our analysis based on a twitter post by Florian Roth to identify (and

analyze) a signed rootkit, with unrevoked certificate and unknown from VirusTotal. In this public

version we will describe a part of our analysis on one of those two dumps. Have a good reading :-)

Introduction
The 24 of July 2019 a post on twitter by Florian Roth caught our attention. The tweet is about a

Winnti rootkit that was just sent on VirusTotal.

At Exatrack, we are fond of rootkit analysis and detection. After more than a month without any

analysis based on this dump, we decided to have a look at it.

Our Analysis is based on the following sample:

https://www.virustotal.com/gui/file/92c37c829dac8f6d277ae4b72b926e82f54ed8fc1b61885d7d7d9

2fd8417b99f/analysis

This analysis aims to identify the major functionalities of the rootkit as well as a part of the userland’s

capabilities.

Sample reconstruction
The file seems to be an executable dump partially corrupted, some PE headers are deleted. We

rebuilt the MZ and PE headers and were able to load the binary and analyze it.

http://twitter.com/ExaTrack
http://www.exatrack.com/
https://www.virustotal.com/gui/file/92c37c829dac8f6d277ae4b72b926e82f54ed8fc1b61885d7d7d92fd8417b99f/analysis
https://www.virustotal.com/gui/file/92c37c829dac8f6d277ae4b72b926e82f54ed8fc1b61885d7d7d92fd8417b99f/analysis

@ExaTrack http://www.exatrack.com Page 2

Surprisingly this file is not a driver, as the tweet mentioned, but a 64b DLL file. We’ll see later in the

paper the existence of an embedded signed driver.

DLL file analyze

Context information
Some interesting information can be collected on the DLL before any kind of deep technical analysis.

Firstly, the original DLL’s name seems be workdll64.dll, as declared in the Export Address Table.

This name is probably an internal name.

By searching specifics strings on internet we identified a link with a file available on Hybrid Analysis:

http://ww.hybrid-

analysis.com/sample/a5d6139921576c3aedfc64e2b37ae1a64f3160bd1bb70d4fc7fce956029e7d55

The file’s name is rasppp_decrypt.dat_fixed by r0cu3, we can guess that the original filename

was rasppp.dll classed by the framework as ambiguous. The associated PDB filename is

I:\DrvDev\Works\NdisReroute\X64\NdisRerouteD.pdb, it probably indicates a possible link with

NDIS, this link will be confirmed later in this article. Our file was uploaded for the first time on

VirusTotal the 2015-08-13, so the code is active for at least 4 years.

http://twitter.com/ExaTrack
http://www.exatrack.com/
http://ww.hybrid-analysis.com/sample/a5d6139921576c3aedfc64e2b37ae1a64f3160bd1bb70d4fc7fce956029e7d55
http://ww.hybrid-analysis.com/sample/a5d6139921576c3aedfc64e2b37ae1a64f3160bd1bb70d4fc7fce956029e7d55

@ExaTrack http://www.exatrack.com Page 3

Entrypoint with specifics arguments
The first uncommon characteristic is the initialization of the malware. When a binary is loaded, its

DllMain function is executed. Microsoft define this:

BOOL WINAPI DllMain(

 In HINSTANCE hinstDLL,

 In DWORD fdwReason,

 In LPVOID lpvReserved

);

The lpvReserved argument is not clearly defined. Normally, its value should be 0, but in some

special cases, as highlighted by j00ru (https://j00ru.vexillium.org/2009/07/dllmain-and-its-

uncovered-possibilites/) it can point to a CONTEXT structure.

In our case, DllMain starts by checking this argument against 0:

undefined8 DllMain(undefined8 hinstDLL,int fdwReason,CONTEXT *lpvReserved)

{

 int iVar1;

 registers_dump local_58;

 if (((fdwReason == 1) && (_DAT_1800845e0 != 1)) &&

 (_DAT_1800845e0 = fdwReason, lpvReserved != (CONTEXT *)0x0)) {

If this module is loaded by an analysis framework the value will be set at 0 and the malware will do

nothing. As explained in j00ru’s article: « If fdwReason is DLL_PROCESS_ATTACH, lpvReserved is NULL

for dynamic loads and non-NULL for static loads. »

Process validation
Afterwards the code checks if it is executed in a process named svchost.exe.

 GetModuleFileNameA((HMODULE)0x0,&local_128,0x104);

 _strlwr(&local_128);

 strstr(&local_128,"svchost.exe");

Between the argument’s check (done in another part of the code) and the name check of the

executable, the module‘s detection probability by a sandbox is relatively low.

http://twitter.com/ExaTrack
http://www.exatrack.com/
https://j00ru.vexillium.org/2009/07/dllmain-and-its-uncovered-possibilites/
https://j00ru.vexillium.org/2009/07/dllmain-and-its-uncovered-possibilites/

@ExaTrack http://www.exatrack.com Page 4

Network devices request
The malware try to find the network ethernet device‘s AdapterName using the functions

GetAdaptersInfo and GetIfTable. Once found, the DLL checks the registry key
HKLM\SYSTEM\CurrentControlSet\Control\Class\{4D36E972-E325-11CE-BFC1-08002BE10318}

to identify the subkey Linkage with the associated RootDevice.

The goal here is to validate the network configuration associated with the ethernet device.

Signed driver extraction
During the module initialization steps, it loads a driver based on the current Windows version.

The value « 4 » represent Windows kernel 6.0 (Windows Vista). We were interested by the driver

loaded on OS version 6.0 and upper.

To load the driver, the required registry keys are created by the malware and loading is triggered by a

call to NtLoadDriver (dynamically loaded).

http://twitter.com/ExaTrack
http://www.exatrack.com/

@ExaTrack http://www.exatrack.com Page 5

Driver

Signature
The driver is signed by what is probably a stolen certificate used to load the rootkit on 64b Windows.

 Verified: A required certificate is not within its validity period when

verifying against the current system clock or the timestamp in the signed file.

 Link date: 06:10 11/04/2016

 Signing date: n/a

 Catalog: C:\rootkit.sys

 Signers:

 Cert Status: This certificate or one of the certificates in the

certificate chain is not time valid.

 Valid Usage: Code Signing

 Cert Issuer: VeriSign Class 3 Code Signing 2010 CA

 Serial Number: F0 87 74 64 EC F2 AA 94 E0 4B 84 25 4D ED B5 4E

 Thumbprint: 117F5C5B276C2805D69A48F8B23C25883FCF5BE6

 Algorithm: sha1RSA

 Valid from: 02:00 28/03/2012

 Valid to: 01:59 14/04/2015

Hook of driver NULL.SYS
During the rootkit’s initialization it sets up a hook on the device \Device\Null. To do so, it must

firstly get the DEVICE_OBJECT and its associated DRIVER_OBJECT. With this it can directly modify the

IRP table. The 0xe entry of the MajorFunction array contains the handler for

IRP_MJ_DEVICE_CONTROL.

This action is a little risky for the rootkit, as it is common to see rootkits modifying the \Device\Null

DRIVER_OBJECT .

Once its hook is setup, we can open a handle on \\.\NUL to communicate with the rootkit by IoCtl.

http://twitter.com/ExaTrack
http://www.exatrack.com/
https://docs.microsoft.com/en-us/windows-hardware/drivers/kernel/irp-mj-device-control

@ExaTrack http://www.exatrack.com Page 6

IoCtl Communication
As almost all rootkits, a communication channel is established with the userland DLL using IoCtl:

ioctl_code != 0x156003 && (ioctl_code != 0x15e007)

 The driver expects commands to be passed through the IoCtl buffer in the following format:

struct ioclt_buffer_struct {

 uint CodeId;

 uint DataSize;

 char Datas[];

};

We’ll describe some commands that can be called from the userland.

getMagicNumber (0x200)

The simplest function.

It is probably a tag to check the version number.

hideDriver (0x100)

This command takes one more argument to identify the sub-action to perform:

 1: Hide the driver

 2: Know state of the driver (hidden or visible)

The driver is hidden with multiple methods; its headers are overwritten with null bytes to avoid

detection by simple search of the MZ and PE headers.

Afterward, the driver will enumerate the \Driver directory entries to find its own DRIVER_OBJECT.

Once found, it will remove it from the list by replacing the previous object’s FLINK pointer (next

object) by the next driver.

http://twitter.com/ExaTrack
http://www.exatrack.com/

@ExaTrack http://www.exatrack.com Page 7

The same operation is performed in \Device with the driver’s associated DEVICE_OBJECT (but our

driver has no associated DEVICE_OBJECT in this version).

Although the driver is deleted from the « Directory Object »’s list it also destroys some information

that may revealed it by memory forensic analysis.

This action is also done with the DEVICE_OBJECT, whereas no « device » was affected to the driver.

http://twitter.com/ExaTrack
http://www.exatrack.com/

@ExaTrack http://www.exatrack.com Page 8

SetIpAndPort (0x600)

This command setup the server remote server to validate usage of network injections by NDIS. We

will go back to its usage later in the paper.

send_packet (0x400)

Under some conditions the driver may allow to send Ethernet packets directly on the network

interface. Sent datas are located in the buffer transferred to the kernel. Conditions of this delivery

are described in the next part.

NDIS hooks and network injections
The rootkit have some interesting network capabilities, it position itself at the NDIS level to

communicate directly with the network card. Globally, the references to NDIS functions and hooks

from the driver’s EntryPoint are the following:

http://twitter.com/ExaTrack
http://www.exatrack.com/

@ExaTrack http://www.exatrack.com Page 9

The registerNdisProtocolDriver function will firstly search the TCPIP instance in the NDIS

protocols. This process is done with a simple linked list.

This code walks the registered protocols, once TCPIP (here tcp_ip_ustr) is found, two functions will

be hooked, ReceiveNetBufferLists and ProtSendNetBufferListsComplete. Those functions are

used to receive and send packets of the associated protocol.

The hook_ReceiveNetBufferLists function receives packets from the network adapter. Each

packet’s content will be analyzed and verified against the configuration of the driver, if a precise

format is respected some of the rootkit abilities will be enabled.

It’s interesting to note that the rootkit have his own network packet parser.

Firstly it checks if packet’s size is greater than 0x35 bytes: all TCP packets are larger this size. Next,

the protocol type must be 0x800, this value represent the IP protocol. Then, the rootkit checks if the

IP version is 4 (for IPv4) and that the next protocol is TCP.

Then, the IP source address (so the remote server) is compared with a gobal variable. This variable

can be setup with the IoCtl command SetIpAndPort. It is mandatory to announce the C&C‘s IP

address to trigger the whole parsing of the packet.

http://twitter.com/ExaTrack
http://www.exatrack.com/

@ExaTrack http://www.exatrack.com Page 10

Registering the IP address through an IoCtl command is operated like this:

And checks of the source’s IP address:

Lastly, a checksum is operated on the packet’s data:

This « checksum » is a simple XOR operation between the first DWORD and the third DWORD of the

data, followed by a rotation of 0x10 and the result is stored in the fourth DWORD.

If this check is validated, the rootkit will reference the current handle (OpenQueue) in a global

variable. This variable will be used to send raw packets on the network.

We think those checks aims to probe if the remote server can be contacted and to identify which

interface need to be used to send raw packets on the network.

Once all the conditions are met we can send raw packets directly on the identified network interface.

This can be achieve by using the IoCtl command send_packet (0x400) containing the data to send. As

you can see, we were able to use the driver to send an arbitrary packet on the network.

 D1 D2 D3 D4

ROL

http://twitter.com/ExaTrack
http://www.exatrack.com/

@ExaTrack http://www.exatrack.com Page 11

To summarize, if we want to send raw packets on the network we need:

1. To load the driver

2. To communicate with \Device\Null

3. Send an IOCTL to configure the IP address/port of C&C

4. Exchange with the C&C to grab a checksum who validate the network interface to use

5. Send an IOCTL to emit raw packets

The steps to send this raw packet can be summed up by the following schema:

Conclusion
The attacker behind this driver is a skilled one, the signed driver prove that it has the time and

resources to implement complex attacks. Furthermore, the inner working of the driver demonstrates

a good technical level as NDIS injection are not an easy thing. The rootkit also has stealth capacities

that may not be used anymore because of PatchGuard.

http://twitter.com/ExaTrack
http://www.exatrack.com/

@ExaTrack http://www.exatrack.com Page 12

References

[1] Tweet of Florian Roth:
https://twitter.com/cyb3rops/status/1153983440871669761

[2] Takahiro Haruyama slide with evocation of the rootkit:
https://hitcon.org/2016/pacific/0composition/pdf/1201/1201%20R2%201610%20winnti%20polymor

phism.pdf

http://twitter.com/ExaTrack
http://www.exatrack.com/
https://twitter.com/cyb3rops/status/1153983440871669761
https://hitcon.org/2016/pacific/0composition/pdf/1201/1201%20R2%201610%20winnti%20polymorphism.pdf
https://hitcon.org/2016/pacific/0composition/pdf/1201/1201%20R2%201610%20winnti%20polymorphism.pdf

