
Sysmon Internals

Stéfan Le Berre (Heurs) – stefan.le-berre [at] exatrack.com

Objectives of the talk

• What is Sysmon?

• How Sysmon works?

• What Sysmon see?

• Suspicious activities identifications!

What is Sysmon ?

• Sysmon is a monitoting tool of « SysInternals » suite

• It grab a lot of operations onto the system and log
them into « Event logs » of Windows

• A set of XML rules can be edited to have a more
specific logging

What intercept Sysmon ?
• Events traced by Sysmon :

– Process Create
– File creation time
– Network connections
– Sysmon service state change (cannot be filtered)
– Process terminated
– Driver Loaded
– Image loaded
– CreateRemoteThread
– RawAccessRead
– Process accessed
– File created
– Registry object added, deleted,value set, object renamed
– File stream created
– Sysmon configuration change (cannot be filtered)
– Named pipe created, connected
– WMI Events
– DNS query

XML filters

• Sysmon have a logical tree to take decision of logging
or not

• If event == ProcessCreate and ("timeout.exe" in
Image) and ("100" in CommandLine))

Sysmon installation

• 2 files are dropped on the disk :

– C:\Windows\Sysmon.exe

– C:\Windows\SysmonDrv.sys

• 1 service is installed, it run « Sysmon.exe » when the
system have booted (late loading)

• Microsoft have produce some documentations to
deploy Sysmon by GPO

– Objective : Each computer have his Sysmon running ♥

Some Windows kernel bases

• Executables run into User land

• Drivers run into Kernel land

• To discuss with drivers to use
NtDeviceIoControl

• Some actions are easyier in kernel
land and some other actions are
easyier (or impossible) in userland

Sysmon.exe

SysmonDrv.sys

Some Windows kernel bases

• Windows kernel able to notify some action to other
drivers

• This is a « CallBack » and it’s really usefull to do
complicated action without modifying the Windows
kernel

• For example, when you run an executable an AV can
analyze it and block this execution, those actions are
done with this process

Some Windows kernel bases

• When a driver is loaded a table is affected to the
module (1 table per driver)

• This table is « empty » and can be partialy or totaly
overwrite to handle some actions

• The table name is « IRP Table »

• For exemple to handle a « read » on our driver object
we need to have set the « IRP_MJ_READ » entry

Some Windows kernel bases

• To communicate with a driver we need to open a
handle on a device

• Almost devices of drivers are in \Device

• When we send a message to a device it can be
followed to an upper driver (this is the device stack)

Device 1

Device 2 NewDriver

OriginalDriver Message

Some Windows kernel bases

• FltMgr : Windows filters manager (or MiniFilters)

Some Windows kernel bases

• FltMgr filter can be applied on resources accesses

• There are 2 operations :

– PRE-OPERATION

– POST-OPERATION

Sysmon Global Architecture

• Sysmon.exe continuelly request the driver to get
state of events generated.

Sysmon.exe

SysmonDrv.sys
Ntoskrnl.exe

FltMgr.sys
Event Logs

User

Kernel

(5) Register EventLogs

(1) Load
the driver

(2) Set Notifications

(3) Callbacks

(4) Grab activity

WmiPrvSe.exe

(6) WMI callbacks

(7) ETW Kernel Logger

Open Sysmon handle

• Basically I try this :
>>> open(r"\\.\SysmonDrv",'rb')

IOError: [Errno 13] Permission denied: '\\\\.\\SysmonDrv'

• ACL Problem ?
->Dacl : ->Ace[0]: ->AceType: ACCESS_ALLOWED_ACE_TYPE

->Dacl : ->Ace[0]: ->AceFlags: 0x0

->Dacl : ->Ace[0]: ->AceSize: 0x14

->Dacl : ->Ace[0]: ->Mask : 0x001201bf

->Dacl : ->Ace[0]: ->SID: S-1-1-0 (Well Known Group:

localhost\Every Body)

Open Sysmon handle

• Try with same flags :
>>> windows.winproxy.CreateFileA(r"\\.\SysmonDrv",

0xC0000000, 0, None, 3, 0x40000080, 0)

CreateFileA: [Error 5] Access Deny.

Open Sysmon handle

• When you open a handle on a file, Windows kernel
send an IRP request « IRP_MJ_CREATE » to the driver
linked to the device

Sysmon.exe

Kernel

I/O Manager SysmonDrv IRP_MJ_CREATE

User

Kernel

Open Sysmon handle

• The dispatch table is :
Dispatch routines:

[00] IRP_MJ_CREATE fffff80bc0468d40 SysmonDrv+0x8d40

[01] IRP_MJ_CREATE_NAMED_PIPE fffff803da528ed0

nt!IopInvalidDeviceRequest

[02] IRP_MJ_CLOSE fffff80bc0468d40 SysmonDrv+0x8d40

[03] IRP_MJ_READ fffff803da528ed0

nt!IopInvalidDeviceRequest

[...]

[0d] IRP_MJ_FILE_SYSTEM_CONTROL fffff803da528ed0

nt!IopInvalidDeviceRequest

[0e] IRP_MJ_DEVICE_CONTROL fffff80bc0468d40 SysmonDrv+0x8d40

[0f] IRP_MJ_INTERNAL_DEVICE_CONTROL fffff803da528ed0

nt!IopInvalidDeviceRequest

• Function at SysmonDrv+0x8d40 receive ALL requests
for CREATE/CLOSE/DEVICE_CONTROL

Open Sysmon handle

• Try with the privilege :
>>> windows.utils.enable_privilege("SeDebugPrivilege", True)

>>> windows.winproxy.CreateFileA(r"\\.\SysmonDrv", 0xC0000000, 0,

None, 3, 0x40000080, 0)

524

ID of the function in the IRP_MJ
(0 -> CREATE)

ID of « SeDebugPrivilege »

Sysmon events pull

• Sysmon.exe continuelly request the driver to get
state of events generated.

Sysmon.exe

SysmonDrv.sys

Sysmon events pull

• Screen of a message exchanged with the kernel

Driver/Module loading

• To register a function who will handle all images
loading there a a simple function :
« PsSetLoadImageNotifyRoutine »

CreateProcess/Thread

• Kernel export 2 functions linked to 2 lists of callbacks

– PsSetCreateProcessNotifyRoutine

– PsSetCreateThreadNotifyRoutine

• Really simple and old lists

Registry interceptions

• Registry callback registration is
« CmRegisterCallback », usage is similar to
« PsSetLoadImageNotifyRoutine »

Sysmon NamedPipe

• First Method: For kernel previous than version 6

• Sysmon create a new device named
« SysmonPipeFilter » and attach it to « NamedPipe »

Sysmon and FltMgr

• Second Method

• Sysmon use FltMgr to monitor actions on FileSystem

• With this we don’t need to directly attach to the
device stack to grab all messages (such 2.0)

Sysmon and FltMgr
• Monitor :

– \Device\HarddiskVolume*

– \Device\NamedPipe

Process Access

• This kind of action have a stack of filters like FltMgr,
to handle:

– Threads

– Processes

– Desktops

• Like FltMgr there is a system of PRE/POST
operations, only POST operations are used for
logging

WMI filters

WMI is really NOT funy…

WMI filters

• A callback is called each 5 seconds

• This callback filter 3 WMI classes :

– __EventConsumer

– __EventFilter

– __FilterToConsumerBinding

• All those classes are used to set WMI persistance, so
Sysmon just check pesistance queries

WMI filters

[…]

WMI filters

• When the callback is triggered, the function
« Indicate » of the sink object is called

• Sysmon check is the action is interesting to log on
those 3 actions :

– "Deletion"

– "Creation"

– "Modification"

Network tracing

• To trace network trafic Sysmon use ETW callbacks
"NT Kernel Logger" on
EVENT_TRACE_FLAG_NETWORK_TCPIP

• Instance is named "SYSMON TRACE"

• Each event is described in a buffer. And Sysmon
explore WMI objects inside "root\wmi" that descibed
howto parse the buffer based on the event type

• More infos on ETW on :
https://exatrack.com/public/etw_for_the_lazy_rever
ser_beerump_2019.pdf (FR)

https://exatrack.com/public/etw_for_the_lazy_reverser_beerump_2019.pdf
https://exatrack.com/public/etw_for_the_lazy_reverser_beerump_2019.pdf

Events registration

• Registration of handle to write eventlogs.

Design fail…

• All logs are register by « Sysmon.exe » service, so if
(for an unknows reason) it crash… no logs :(

Sysmon.exe

SysmonDrv.sys
Ntoskrnl.exe

FltMgr.sys
Event Logs

User

Kernel

(5) Register EventLogs

(1) Load
the driver

(2) Set Notifications

(3) Callbacks

(4) Grab activity

WmiPrvSe.exe

(6) WMI callbacks

(7) ETW Kernel Logger

Sysmon intercept everything ?

• A lot of actions are handled by Sysmon

• But Windows have a lot of more cases to break logic
of a « normal » execution

• For exemple Sysmon don’t monitor win32k
operations

• A full memory malware can hide itself to Sysmon if it
tricks a lot

• But most of attackers can’t burn all those tricks for a
campagn, so they use standard actions and can left
traces on Events

Sysmon intercept everything ?

• A big problem is the Sysmon configuration

– A lot of companies use standards shared XML

– So they miss majority of system actions

– When an attacker do tricky actions we can see side effects
in OS activity and can reveal an attacker
• For exemple a conhost.exe run by a critical executable -> maybe an

injection

• Anormal file writed by a critical process

• DLL loaded by a critical process (often DLL loading is disable)

• …

• We recomand to log all major system actions
(minimum all CreateProcess)!

Attackers actions examples

• A lot of actions are done by a lot of attackers

• Exemple of actions:

– PSEXEC execution

– SVCHOST located in a temporary directory

– Write of a RUN registry key and the file pointed

– Powershell with a payload full of shit

– Word executing a VBS

– Scheduled Task with a file in %TEMP%

– Creation of executable in « C:\Programdata »

Detecting attacker

• Some rules based on previous artefacts

• Identify new executables hashs/paths on your SI

• Anormal connections of a user on multiple
computers

• Have a list of normal runned services on your park

• Identify actions of user at suspicious hours (when
they sleep for example)

Sysmon – Deep Learning

• We can write a lot of rules, on a lot of cases

• But often when we see an event we can say
« Hummm, it smell really bad! »

• This is the reflexion process we want to reproduce on
our logs

• Honestly we have tried ML because everybody told
us that it would perfectly apply to our usecase. We
gave it a try without really expecting anything from
it.

Sysmon – Deep Learning

• Basics of Neural Networks / Deep Learning

https://playground.tensorflow.org

https://playground.tensorflow.org/

Sysmon – Deep Learning

• Our goal is to identify a suspicious CreateProcess

• To do this we exact:

– Current process name

– Current command line

– Parent process

– Parent command line

• We have 1 exit node to say if it suspicious or not

Sysmon – Deep Learning

• Set of training

Bening
executions on

real computers

Malicious
executions

grabed for real
malwares

~100k executions

~15k

~85k

Sysmon – Deep Learning

• Set of testing

Checks with
real executions

from other
compagines

New Malicious
executions

grabed for real
malwares

>95% of detection

0,1% to 3% of false
positives

Sysmon – Deep Learning

• Funy detection

– 'PPath':
'C:\\Windows\\SysWOW64\\FlashPlayerInstaller.exe'

– 'PCmdLine': 'FlashPlayerInstaller.exe -install -iv 11'

– 'Path': 'C:\\Windows\\SysWOW64\\cmd.exe'

– 'CmdLine': '"C:\\Windows\\ System32 \\cmd.exe" /c del
"FlashPlayerInstaller.exe" >> NUL '

Conclusion

We know how Sysmon grab his logs.

What it can to detect and what it can’t.

How to parse logs to identify suspicious activities.

Now: Just install Sysmon!

Thank you for your attention.

Any questions ?

Stéfan Le Berre (@Heurs)

stefan.le-berre [at] exatrack.com

https://exatrack.com

Click here !

Nice work on sysmon internals too :
https://ackroute.com/post/2017/08/08/sysmo
n-enumeration-overview/

https://exatrack.com/
https://ackroute.com/post/2017/08/08/sysmon-enumeration-overview/
https://ackroute.com/post/2017/08/08/sysmon-enumeration-overview/
https://ackroute.com/post/2017/08/08/sysmon-enumeration-overview/
https://ackroute.com/post/2017/08/08/sysmon-enumeration-overview/
https://ackroute.com/post/2017/08/08/sysmon-enumeration-overview/
https://ackroute.com/post/2017/08/08/sysmon-enumeration-overview/
https://ackroute.com/post/2017/08/08/sysmon-enumeration-overview/
https://ackroute.com/post/2017/08/08/sysmon-enumeration-overview/

